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MULTIFRACTALS IN IMAGE PROCESSING AND PROCESS IMAGING

Lee De Cola 
U.S. Geological Survey

521 National Center 
Reston, Virginia 22092

ABSTRACT

Image data may be analyzed for a range of scale levels by generalizing high resolution meas­ 
urements into an image pyramid whose statistical description is used to estimate a fractal 
dimension Dt for each value t of the image histogram. This multifractal analysis is demon­ 
strated for a satellite image of Reston, Virginia, which is compared to data simulated by 
Gaussian and random walk processes. The behavior of the multifractal dimension is used to 
characterize simulated and empirical data and to detect low- and high-dimension features in 
the image.

INTRODUCTION

Casual observation, as well as a great deal of empirical research, reveals that

  spatial phenomena are complicated and irregular,

  spatial patterns tend to be self-similar among scales, and

  spatial data cannot be completely characterized using Euclidean notions of points, 
lines, planes, and volumes.

Fractal sets, which are irregular, self-similar, and non-Euclidean, can be used to analyze data 
for many kinds of spatial phenomena. This paper presents results from experiments using 
fractal concepts in the analysis of images. Four kinds of sets topological, ideal, stochastic, 
and empirical can in part be characterized by multiple fractal dimensions D. These meas­ 
ures are applied to empirical data, and the results are then compared to data simulated to 
mimic spectral characteristics of the real images. This comparison suggests a hierarchy of 
spatial processes that give empirical data their richness and complexity. Although the

Any use of trade, product, or firm names in this publication is for descriptive purposes only 
and does not imply endorsement by the U.S. Government.



objective of extracting features from images is demonstrated, the exercise also provides a 
broader understanding of spatial process.

Let us make a distinction among these four kinds of sets 
across scales or space, and not all of which correspond 
(De Cola, 1991):

lo
, which are not always self-similar 

a single (monofractal) dimension

Fractal set

Topological

Ideal

Stochastic

Empirical

Irregular

No

Yes

Yes

Yes

Self-similar

Yes

Yes

Yes

No

Fractal dimension

Single (integer)

Single

Multiple

Multiple

Topological spaces establish the Euclidean framework, usually R3, within which data are 
gathered, and may be used to define locations of observations, usually bounded by R1 lines in 
R2. Such topological fractal sets are self-similar and have unique integral nonnegative 
dimensions D e N.

Ideal fractal sets illustrate the fundamental ideas of fractal geometry, namely the irregular 
self-similarity of single-dimension (monofractal) sets. The infinite Koch "snowflake" 
construction is an example of an ideal fractal set with dimension D = Iog4/log3 ~ 1.26 
identically at all scales, uniformly at all locations, and consistently at all times. Much like 
their Euclidean counterparts the point, line, or plane, ideal fractals are perfect and unchanging.

Stochastic fractal sets require that we drop the monofractality assumption and measure many 
dimensions in order to represent the varying form of a phenomenon as a function of local 
variables across space. These sets, which have a self-similar structure compounded with a 
random component, are more complex and are particularly useful in the simulation of realistic 
data. But unlike ideal fractal sets, stochastic data are multifractals whose dimensions change 
with intensity, location, time, and even across scales. Figure 1, for example, is a rendering of 
a cellular random walk in two dimensions, where the vertical axis is the number of times a 
given cell is visited (Kaye, 1989). This simple cellular model generates an irregular self- 
similar pattern small pieces look like the whole yet the pattern can only be characterized 
as having more than a single (monofractal) dimension (JBarnsley, 1988; Falconer, 1990).

Finally, empirical fractal data, which represent a decidedly nonfractal world, require that we 
abandon self-similarity except within a range of scales. Because real spatial phenomena are 
the products of scale-bound processes, their descriptions vary depending on how, where, and 
when they are measured. Far from being a liability, this situation means that a measurement 
such as fractal dimension is a function D() of local variables. Multifractal measurement can 
be used as a description of how spatial patterns, as well as hypothetical underlying processes,



vary in irregularity at different intensities from place to place and time to time and even 
among scales. This paper describes how the multifractal model can be used to explore spatial 
structure and to make inferences about processes in the real world.
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Figure 1. Three-dimensional rendering of an orthogonal, unit-step, random walk in two
dimensions.

The world is therefore not "fractal" in the ideal sense, for the processes underlying real 
phenomena are too complex to be characterized by any single model (Nicolis and Prigogine, 
1989). But empirical data are increasingly amenable to models embodying the fractal 
paradigm of self-similar irregularity represented over a wide range of scales by nonintegral 
dimension. It should also be recognized that fractal analysis is just one approach to the 
measurement of spatial variation; two other multiscale approaches are Fourier and variogram 
analysis (Roy, 1986; Burrough, 1989). Although there is not enough space here to develop 
this argument, we can demonstrate that the fractal model is quite robust, parsimonious, and 
therefore at least as powerful a characterization of spatial data as these alternative techniques.

MULTISCALE ANALYSIS

Before we turn to the application of these ideas to simulated and empirical data, we must 
establish an algorithmic foundation for the multiscale analysis of spatial form. This foun­ 
dation is particularly valuable because several approaches to the measurement of fractal 
dimension exist. We begin with topological specifications that provide data about a phe­ 
nomenon within some maximum spatial extent and for a smallest resolution element. Let 
L > 0 be an integer with n = 2L and let X0 be an nxn array (raster) of integers representing the 
value of some variable *0. One way to generalize this 0-level array is by sampling every



other cell (pixel) in every other row, yielding an 
technique used here, however, is to take the mean value 
alization may be repeated to yield a stack of L+l layers 
Figure 2, for L = 4. Each layer in the stack is a generall 
1987).

4
3

2

1

0

(n/2)x(n/2) array (Justice et al., 1989). The 
of each 2x2 subarray, which gener­ 
ic,, C = 0, . . ., L, as shown in 
ization of the layer below (Uhr,

Figure 2. An L = 4 data pyramid in which each layei* is an aggregation of the one below.

Three things should be noted. First, it is possible to use subarrays other than the 2x2 chosen, 
but this is a natural choice that also allows rapid bit aritlimetic. Second, while the size of the 
original C = 0 layer is (2L)2, the size of the complete img.ge pyramid is only 4/3(2L)2. Third, 
although the size of each layer is one-fourth that of the one below it, the amount of infor­ 
mation (as measured, for example, by some qualitative assessment of image "clarity") 
certainly declines more slowly than this.

The fractal analysis of empirical data is based on the examination of statistics computed at 
each level. At level C = 0 let a subset of X0 be Xto = {jc0: JCQ > f), where t is a threshold value 
of the array (threshold brightness in the case of an image) and let e# be the length of the 
boundary of X& i.e., a count of the cell edges separating X,o from its complement X^X^ 
(Culling, 1989). It is possible to generalize this measurement to the set XA = {*,: xt > t}
which yields e& the cell boundary of the generalized sen XA. Fractal dimension is a measure 1>.
of the scaling relationship between a region's boundary 
which, taking logs yields

where c t is an ordinary least squares error term. Because the data X exist in the topological
3-dimensional space [R2 x H of location x value, Dt =

and its scale level t eA = a

(1)

- bt (Falconer, 1990, p. 42). The
regression also yields an estimate of a,, a measure of size, which will not be discussed here 
(De Cola, 1989a and 1989b; see Whalley and Qrford, 1989, for other approaches).

This multiscale analysis provides not merely a single 
tion Dt (Lovejoy and Schertzer, 1988) that varies with

D but a mM/ft'fractal func- 
ihe intensity of a phenomenon (in this



case r, the brightness values of an image). The expectation is that 0 < Dt < 2; the irregularity 
of the phenomenon measured by the data X may range between that of a point singularity, for 
which D = 0, and that of a Euclidean set (such as a white disk on a black field) for which 
D = 2. Dt is therefore a tool whereby we can measure the form of a phenomenon across its 
range and, by selecting different windows, throughout the space it occupies.

A simple way to illustrate these ideas is with a remotely sensed image. The SPOT high- 
resolution visible (HRV) panchromatic sensor detects energy in the range of 0.45 to 0.80 |im 
for (10m)2 pixels. Figure 3 shows the location of a SPOT scene chosen for analysis, a 10- 
level (10.24 km)2 image centered on the USGS National Center in Reston, Virginia. (Per­ 
mission to use this image courtesy of SPOT Image Corporation, Reston, Virginia © 1990 
CNES.) The image (hereinafter called Image, to distinguish it from simulated data) is shown 
as a pyramid in Figure 4, in which frame 0 is at the highest resolution (1024x1024 pixels of 
(10 m)2) while frame 1 shows the data aggregated into 512x512 pixels each of 20x20-m2, and 
so forth. Note how each scale level, while similar to its neighbors in the pyramid, has its 
own characteristics. The higher resolution images ({ = 0, 1) are best for the identification of 
individual features such as lots and roads; middle resolutions (( = 4, 5) are suitable for the 
detection of large, complex areas; and low resolutions (( = 8, 9) highlight broad areas of high 
and low brightness. A (10.24 km)2 single-pixel, level-10 image could also be regarded as part 
of an even larger array, in keeping with the idea of movement up an open-ended scale pyra­ 
mid. (In fact, a number of the frames are similar in resolution, but not necessarily in spectral 
sensitivity, to such sensors as SPOT multispectral (frame 1), Landsat Thematic Mapper 
(frame 2), Landsat multispectral (frame 3), Coastal Zone Color Scanner (frame 6), and 
Advanced Very High Resolution Radiometer (frame 7).)

Figure 3. Location of the (10.24 km)2 Reston, Virginia, SPOT scene.
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Table 1 shows the characteristics of this pyramid. Because each layer is an aggregation of 
the one below it, Xt = 46.1 for C = 0,. . ., 10, but the standard deviation of the data st de­ 
clines with scale. Such a data structure, like the related quadtree scheme, allows us to move 
within the [0, L] continuum of a scale space (Samet, 1990). Upward movement is towards 
aggregation, large features, and generalization, while downward movement is toward dis- 
aggregation, greater detail, and the segmentation of space (Goodchild and Mark, 1987; 
Hummel, 1987).

Table 1. Statistics of the data pyramid for the 
Reston, Virginia, image.

Level

f

L = 10
9
8
7
6
5
4
3
2
1
0

Edge

2*

1,024
512
256
128
64
32
16
8
4
2
1

Cell size

meters

10,240
5,120
2,560
1,280

640
320
160
80
40
20
10

Number of
cells
4L~*

1
4

16
64

256
1,024
4,096

16,384
65,536

262,144
1,048,576

Standard
deviation
of datas«
 
2.17
2.30
3.47
4.38
5.65
6.85
7.93
9.09
9.68

10.21

Figure 5 shows a plot for Image of the values of {£),: r e [28, 81]}, each estimated by using 
equation (1). (The minimum R2 for these 54 estimates is 0.95.) Clearly the data are not 
monofractal: Dt = 0.402 ± 0.515 and these dimensions have a typically multifractal parabolic 
shape (Falconer, 1990). For low values of t the phenomenon is essentially pointlike, with few 
edges separating the sparse set from its background complement. Low values of Dt are also 
found for high values of f, but here the roles of figure and background (set and complement) 
are reversed. And the maximum D^ = 1.21, occurs at X. Shown on the figure is a quadratic 
fit to the data:

/5, = -2.67 + 0.144r - 0.000177*2 R2 = 0.70 (2)

(where the caret signifies prediction) that gives a predicted maximum of /348 = 0.87. More­ 
over, there is significant autocorrelation among the values of Dt the Durbin-Watson statis­ 
tic = 0.611 (DW 01 = 1.36), which does not support the hypothesis of nonautocorrelated 
disturbances (Theil, 1971). Not only is D a parabolic multifractal, each value is correlated 
with its neighbors, and this should be considered when modeling the behavior of Dr
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Figure 5. Fractal dimension Dt versus threshold pixel value t for the Reston, Virginia,
image, with quadratic fit.

SIMULATION: PROCESS IMAGING

To better understand what Dt tells us about Image, it will be useful to explore how Dt behaves 
for data over whose parameters we have some control. .While the objective of image proc­ 
essing is often simply to improve the appearance of an image in some way, the more ambi­ 
tious task of digital image analysis is to make inferences about the real world based on the 
information from raster data (Muller, 1988). For example, the 107 bits of the X0 Image are 
reduced to the three coefficients of equation (2) relating Dt to t a mere 102 bits a good 
example of data reduction. Of course a great deal of data are lost in this process, but we gain 
information for inferences about the processes that might have given rise to the image.

To consider what fractal analysis has revealed about the Image data, we need to explore alter­ 
native spatial processes that might give rise to such an array of numbers. This approach to 
spatial process modeling may be called "process imaging." This technique, which is a form 
of visualization but more explicitly deductive, reverses the direction of image processing by 
producing large data sets from relatively brief descriptions of spatial process consisting of a 
few instructions. For example, the lO2 bits that specify the first two moments of the Image

8



data will be used to simulate an image of 107 bits, a good example of data expansion 
(Frenkel, 1988).

Consider therefore what processes might simulate various aspects of the Image data whose 
mean X = 46.1 and standard deviation s = 10.2. Figure 6 shows one way of organizing a 
class of cellular spatial models according to whether or not they manifest three characteristics:

  Are the values of a cell quantities (numerical measurements) as opposed to nominal 
classes, as in a raster GIS? An example of a quantitative process would be the 
Poisson model of the completely random location of points among cells (Schachter 
and Ahuja, 1979; De Cola, 1991).

  Are all values determined simultaneously or sequentially over some period? Cellular 
automata are examples of processes in which array values are computed across space 
at the same time (Wolfram, 1984; Phipps, 1988).

  Is the value of one cell autocorrelated with (affected by the value of) any other cell? 
Diffusion limited aggregation is an example of a process that sequentially assigns a 
nominal binary value to a cell based on the values of its neighbor (Batty et al., 1989).

AUTOCORRELATED

Cellular X Random 
utomata

wni

SIMULTANEOUS QUANTfTATIVE

Figure 6. A typology of cellular processes according to whether they have
three characteristics.



These characteristics may be combined in various ways to provide a wide range of hybrid 
models for the study of a given real-world phenomenon.' Perhaps the most useful such hybrid 
is fractional Brownian motion (Musgrave et al., 1989), but there are many other examples.

To reproduce certain characteristics of the Image data, we have used two relatively simple 
processes, called Gauss and Randomwalk, to simulate images of 2S62 pixels each. The 
simplest simulation of the image is a "heap" of pixels whose spectrum is normally distributed 
with the same mean and standard deviation as the Image. (Think of taking the pixels from 
Image, scrambling them, and then withdrawing a smaller set of 65,536 pixels.) Figure 7 
shows one such simulation, and although Gauss and Image share the first two moments of 
their histograms, their appearance is very different. The complete entropy of the Gauss 
reveals virtually no spatial information. In fact, this image is one representation of what an 
absolutely fractal world might look like: stochastically identical at all scales and no cues 
about the size or location of anything.

Figure 7. Gauss simulation on a 2562 array using the same mean and standard deviation
as the Reston, Virginia, image.

10



The Gauss model is the most parsimonious way to simulate raster data spectrally similar to a 
given image. The problem is that this process manifests no spatial autocorrelation because 
the value of each cell is unrelated to that of any other. This totally random behavior is 
indicated in Figure 8 by the fact that the estimation of Dt is confined to a very narrow range 
of the image values, 38 < t < 55, centered on the mean of the image histogram, although JCQ e 
[4, 86]. Moreover, Dt < 0 for all but three values of t. This behavior appears to reflect the 
extreme spatial dispersion of the Gauss process, where spatial autocorrelation is absent, 
clusters of homogeneous pixels are rare, and therefore the dimensionality of the process is 
low (the possibility of negative multifractal dimensions is discussed in Mandelbrot, 1989). 
Certainly this process corresponds neither in appearance nor in process to the real world.

Dt 
1

o

-1

-2

-3

-4

30 40 50 60

Figure 8. Fractal dimensions for a Gauss simulation.

It is illuminating to compare the Gauss simulations to a spatial process shown in the typology 
of Figure 6 that is clearly autocorrelated. We simulated 16 random walks that begin with a 
square lattice window of 2S62 empty cells, i.e. x0 = 0 V jc, starting at the central cell. The 
simulation moves randomly according to the uniform distribution of /V(T) = Pr(l>) = Pr(-*) = 
/V(<-) = M. Each time a cell is visited, the value of XQ is incremented and the process stops 
when !XQ = JTx 2562 = 46.1 x 65,536 = 3,020,554 steps. If the process leaves one edge of 
the array it returns at the opposite edge, so that a unit-step orthogonal random walk on a torus 
is simulated (De Cola, 1991). An example of this simulation is shown in Figure 9.

11



Figure 9. Randomwalk simulation on a 2S62 lattipe, with the same mean as the
Reston, Virginia, image.

The Randomwalk simulation corresponds to the Image data if we imagine that the brightness 
values for each pixel are numbers representing events at (10 m)2 locations; indeed, the radi­ 
ance values are linear and homogeneous transformations of the energy received within the 
frequency limits of the sensor (SPOT, 1988). Although the simulation shown in Figure 9 
might be an adequate representation of cloud data (Joseph, 1985) or perhaps chaotic terrain 
(Goodchild, 1982; Jones et al., 1989), it bears only weak resemblance to the study image but 
is certainly closer than Gauss. The fractal plot of this simulation, shown in Figure 10, is also 
different from that of the Gauss process. The process yields a characteristic parabola, but the 
curve spans a wider domain and range than Gauss. Even for low values of brightness the

12



image gives a wide range of dimensions, generally in the range 0 < Dt < 1.3. When fitted to 
a quadratic polynomial, the simulation yields

= -0.328 + 0.0519r - 0.000481*2 R2 = 0.65

which has a predicted maximum D& = 1.07. Although these results share the parabolic shape 
of the Gauss process, much more acceptable dimensions are produced and for a much larger 
domain of t values (compare Figures 5 and 8).

Dt 
2.0

1.5

1.0

0.5

0.0

-0.5

-1.0

20 40 60 80 100 120 140 160 180

t

Figure 10. Fractal dimensions for a single Randomwalk simulation.

So far the analysis has been largely visual and qualitative. Two stochastic processes (Gauss 
and Randomwalk) and one empirical data set (Image) have similar histograms, but give very 
different images. While the behavior of Dt for each of the three has been shown to have the 
parabolic form typical of multifractal sets, the domain of dimension for Gauss is too restricted 
and its range too frequently negative to be an appropriate model for the empirical image. We 
may therefore abandon Gauss as a model and pursue Randomwalk. To examine the general 
behavior of Image over space and to provide data with a sufficient sample size, we divided 
the full 1024xl024-pixel image into sixteen 256x256-pixel subwindows and computed Dt for

13



each value of t for each subwindow. Figure 11 represents a fractal plot of the results. Dt 
spans almost all of its expected range, and although this .scatter has no particular mathe­ 
matical form, a cubic polynomial has been plotted to suggest that the data may have an 
underlying parabolic shape significantly distorted by a third-degree term at the positive 
extreme.

Dt 
2.0 H

1.5

1.0

0.5

o.o

-0.5

-1.0-1

X * +
t . +**i + ++ + 
 ***>£* ^ ^

j&L.

20 40 60 80 100 120 140 160 180

Figure 11. Fractal dimensions for sixteen 256x256-pixel subwindows of the 
Reston, Virginia, image, with cubic fit.

Using the mean of the image histogram, 16 Randomwalk simulations were also run. Their 
fractal plot (Figure 12) indicates that the cubic polynomial gives a better fit. Table 2 displays 
the results of fitting third-order polynomials to the relationship between Dt and t for the two 
sets of 16 images. Terms were added to the model if they were statistically * 0 at the 10 
percent level of significance. The table, as well as a comparison of Figures 11 and 12, 
reveals similarities among and differences between the 16 Randomwalk simulations and the 
16 subwindows of Image. On the one hand, both roughly correspond to a cubic polynomial, 
the estimates of whose terms (except for the intercept) differ by no more than 10 percent. On 
the other hand, the two data sets differ in the following ways: (1) Randomwalk corresponds 
to a cubic relationship in all but two of the simulations, while the results of Image sub­ 
windows are less consistent; (2) the distributions of all of the Image coefficients are highly 
and inconsistently skewed; and (3) the mean R2 for the Randomwalk regressions is over 50

14



percent higher than that for Image. (A curve such as Dt = afe**, with a maximum at I - 
~P/y, might better fit the Image results. A similar curve appears in Mandelbrot, (1989).)

Dt
2.0

1.5

1.0-

0.5

o.o

-0.5

-1.0

0 20 40 60 80 100 120 140 160 180

t

Figure 12. Fractal dimension for sixteen Randomwalk simulations on a 2562 lattice.

Table 2. Results of fitting third degree polynomials to the 16 Randomwalk and
16 Image subwindows.

Term

0 
1 
2 
3

R2

Random walk 16 simulations

N Mean

16 -0.749 
16 0.0915 
16 -0.00138 
14 0.00000665

16 0.774

Standard 
deviation Skewness

0.579 -0.661 
0.0336 0.871 
0.000626 -0.654 
0.00000315 0.561

0.0802 -0.468

Image

N Mean

16 -0.515 
13 0.0930 
14 -0.00127 
12 0.00000633

16 0.507

16 subwindows

Standard 
deviation Skewness

2.41
0.128 
0.00206 
0.0000120

0.206

-1.275 
1.230 

-1.502 
1.288

-0.289

15



FROM IMAGE TO MAP

These experiments suggest that multifractal dimensions reflect different characteristics of 
spatial process. In general, (PDfi? < 0, and D, may have complex behavior for auto- 
correlated processes. We have observed that, although the mean values of the three processes 
(Gauss, Randomwalk, and Image) are the same and their histograms are all roughly normal, 
their spatial appearances (and consequently their fractal behavior) are quite different. Gauss 
is a diffuse multifractal whose lack of spatial autocorrelation results in largely negative values 
of Dt. Randomwalk is a spatially coherent stochastic multifractal for which Dt = 0.76 ± 0.38, 
varying with intensity. The subimages of Image are real multifractals for which D, = 0.98 ± 
0.33, varying not only with intensity but also strongly with location; i.e., the spatial form of a 
given brightness value is a function not only of (possibly inherent) processes associated with 
the data but also of where the value occurs. In keeping with the above notion of multi- 
fractals, it therefore appears that combinations or hierarchies of models will be necessary to 
explain real spatial patterns (Getis and Boots, 1978). Certainly we have had to abandon the 
monodimensional restriction of ideal fractal sets.

In fact, the spatial variation of the Image process may be seen by examining a particular layer 
of the data pyramid. At C = 5, for example, there are (2<10~5))2 = 1024 subwindows, each of 
which has an ensemble of associated multifractal dimensions. Figure 13 maps the values of 
D43 = 1.28 ± 0.313. We can see exactly how Dt varies over space, and in fact, this picture 
could be viewed as a fractal of a fractal, or "metafractal." Whether or not this is a suitable 
neologism, the figure is a clear illustration of how far this real-world phenomenon deviates 
from the isotropism of ideal fractality. The process appears to be stationary, however, as 
fitting the data to a plane reveals no significant north-south or east-west trend.

Any automated technique designed to extract features from images must be sensitive to 
dependencies upon intensity and location in spatial pattern. The above exercise illustrates 
moreover that considerable intelligence natural as well as artificial is necessary to inter­ 
pret spatial and spectral information (Uhr, 1987). Because fractal concepts provide a key to 
the multiscale measurement of self-similar spatial patterns, it is possible to use scale infor­ 
mation to distinguish among patterns in real-world images. Dimension can be used to 
spatially identify features in a way that suggests how automated image processing based on 
multiscale analysis might work.

We have used the technique developed here to do some image processing on a subwindow of 
Image, specifically a 256x256-pixel subwindow around the South Lakes region of the scene 
(Figure 14). A parabolic fit to the multifractal dimensions of this image gives the equation

Dt = 1.107 + .00887r - .000130*2 R2 = .72

Figure 15 shows the residuals e, = (Dt - D^ from this regression. Consider first the maxi­ 
mum residual e^ = .27, implying that the values of the image for t > 27 have a more regular 
boundary than do other thresholds. When the values of the image JC0 < 27 are colored black,
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as in Figure 16, we see that they are associated with the lakes of the region. Another 
interesting interval is defined by 47 < JCG < 57, the longest run of negative residuals (i.e., 
relatively low dimensional features whose perimeters quickly disappear at higher scales). 
When the pixels associated with this interval are colored gray, we see in Figure 16 that they 
may be associated with some of the roads in the subwindow. We therefore arrive at a crude 
thematic map of the region, created by using a semiautomated technique that can be used to 
extract other features as well.

The above distinction among fractal processes consequently applies to extracting infor­ 
mation and ultimately making maps from images. Although the relatively scale- 
independent structure of the Randomwalk model can be used to characterize the fractal 
behavior of the Image data, some of the interesting natural and cultural features we wish to 
highlight in a map are revealed by the extent to which they deviate from simulated processes. 
It is useful to speculate on other processes that might have given rise to the patterns in which 
we are interested to see why the exceptions that make the world so interesting actually occur, 
particularly as a result of human activity. Indeed, the detection and depiction of these 
exceptions are one of the main functions of the mapping process.

EDGEDIM 

2.0

Figure 13. Three-dimensional plot of the values of D43 for 1024 (= 32x32) subwindows
of the Reston, Virginia, image.
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Figure 14. Panchromatic image of the South Lakes subwindow of the Reston Image.
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Figure 15. Residuals from quadratic fit of Dt' for South Lakes subwindow.
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Figure 16. The South Lakes subwindow classified into high-dimension "lakes" and low- 
dimension "roads."

CONCLUSION

3n the basis of the above results, we may therefore postulate that four kinds of models 
coexist in the real world:

  true noise, like that of Gauss, that is often inherent in instruments and is completely 
scale independent,

  more complex physical processes that can often be visualized by stochastic models 
(like that of Randomwalk), which in the real world look like mountains and clouds 
and result from generally chaotic processes that are relatively scale independent,

  natural processes, such as vegetation and other land cover evolution, that are the result 
of complex multifractal systems working within relatively narrow scales, and finally,
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  cultural or human activities that are frequently erratic, difficult to predict, and often 
strikingly scale dependent.

The analysis has also illustrated how movement within a scale space allows a scientist to 
aggregate or subdivide space in order to focus at will on low-level measurement, high-level 
description, and feature detection. Those phenomena that are more scale independent (closer 
to the classical fractal ideal) require fewer data than others whose scale and location depen­ 
dence reveal exceptions. This approach is obviously of value for the management of data, 
and extends the notion of the quadtree by asserting the pertinence of all scales of the image 
pyramid to the understanding of process (Samet, 1990). No level is universally appropriate 
for examination; each reveals important scale dependencies, and taken together, all may be 
used both to summarize the irregularity of pattern and to make inferences about the com­ 
plexity of process. While it is obviously true that the level-0 image contains all the data that 
exist, higher level images are more suitable for more generalized analysis, and from a data 
management perspective, they are considerably smaller.

The analysis also suggests the value of simulation and visualization in image analysis. The 
notion of process modeling includes and extends specifip techniques of image processing and 
land use classification to encompass broad multidisciplinary studies that analyze varieties of 
data to make complex inferences about real-world processes (Holdridge et al., 1971; Szeliski 
and Terzopoulos, 1989; Schlesinger et al., i990). Spatial scientists are beginning to merge 
sophisticated multivariate analytical techniques with the manipulation of image data, and we 
need to acquire skills in this area that are commensurate with our integral-dimension (point- 
arc-polygon) capabilities. We are also witnessing a convergence between image processing, 
which ideally reduces large amounts of data to smaller amounts of information, and process 
imaging, which produces large amounts of data from the information contained within small 
models. A dialectic between these techniques is developing.

Finally, this exercise has demonstrated how multifractal analysis of spatial data can be used to 
make inferences about the processes that give rise to spatial patterns. The techniques of 
remote sensing and geographic information system analysis are being extended by a wide 
range of disciplines (Holden, 1988; Chrisman, 1990). Such fields as geophysics, geomor- 
phology, hydrology, geology, and economic geography provide a rich set of spatial models 
with predictions of spatial pattern that have been associated not merely with specific fractal 
dimensions, but with multifractal behavior. It is clear that we have only just begun to make 
use of a powerful idea that enables us to reach beyond the concepts and techniques of any 
one discipline.
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